

Analysis of Genetic Mutations in the BioFIND Cohort

BioFind Cohort Overview

The Fox Investigation for New Discovery of Biomarkers (BioFIND) is a cross-sectional study sponsored by MJFF with support from the National Institute of Neurological Disorders and Stroke (NINDS). Clinical data and biological specimens were collected at 8 sites across the United States. Biospecimen collection was performed at baseline and samples were drawn within 1-3 hours of most recent PD medication administration. Biospecimens collected when subjects were off their PD medications are available from a single follow-up visit 14 days later. This cohort contains 122 well-defined, moderately advanced PD patients and 101 healthy controls. Available de-identified data include clinical motor data, clinical non-motor (cognitive, neurobehavioral, neuropsychological, autonomic, sleep), as well as biologic data including spinal fluid alpha-synuclein, amyloid-beta, tau, and phosphorylated tau levels. Available biospecimens include plasma, DNA and RNA from blood, whole blood pellet, cerebrospinal fluid, urine, and saliva. More information on the BioFIND cohort can be found at https://www.michaeljfox.org/biospecimens.

Genotyping Methods

Study 1 (Project ID 108 & 124)

PI: Dena Hernandez (NIA)

Method: Illumina Human Omni Express Exome+ v1.3 NeuroX array The OmniExpress NeuroX array is an Illumina Infinium iSelect HD Custom Genotyping array containing 961,000 markers including 267,607 Illumina standard content exonic variants, 635,000 tagged SNPs from HapMap and an additional 24,706 custom variants designed for neurological disease studies. Of the custom variants, approximately 12,000 are designed to study Parkinson's disease and are applicable to both large population studies of risk factors and to investigations of familial disease and known mutations. Genotyping was performed per manufacturers protocols. The Genotyping Analysis Module within Genome Studio version 1.9.4 was used to analyze data. The threshold call rate for sample inclusion was 95%. The genetic variants in table 1 were directly typed using the NeuroX array. This list includes the data dictionary description for each variant; note this field includes the ancestral and minor alleles as defined by dbSNP as of April 10th 2014 (build creation 123, build update 138.

DATA DICTIONARY ENTRY	GENE	OTHER
rs114138760 C/G (FWD) G:Ancestral C:Minor	GBA/SYT11	rs114138760_C
rs76763715 C/T (FWD) T:Ancestral C:Minor	GBA	rs76763715_GBA_p.N370S_C
rs71628662 C/T (FWD) T:Ancestral C:Minor	GBA/SYT11	rs71628662_C
rs823118 C/T (FWD) C:Ancestral T:Minor	RAB7L1	rs823118_C
rs10797576 C/T (FWD) C:Ancestral T:Minor	SIP A1L2	rs10797576_T
rs6430538 C/T (FWD) T:Ancestral C:Minor	ACMSD/TMEM163	rs6430538_T
rs1955337 G/T (FWD) G:Ancestral T:Minor	STK39	rs1955337_T
rs12637471 A/G (FWD) G:Ancestral A:Minor	MCCC1	rs12637471_A
rs34884217 (G/T) REV T:Ancestral C:Minor	GAK	rs34884217_G
rs34311866 A/G (REV) A:Ancestral C:Minor	GAK	rs34311866_G
rs11724635 A/C (FWD) A:Ancestral A:Minor	BST1	rs11724635_C
rs6812193 C/T (FWD) C:Ancestral T:Minor	F AM47E/SCARB2	rs6812193_T
rs356181 C/T (REV) T:Ancestral A:Minor	SNCA	rs356181_C
rs3910105 C/T (REV) T:Ancestral G:Minor	SNCA	rs3910105_C
rs8192591 A/G (REV) G:Ancestral T:Minor	HLA	rs8192591_T
rs9275326 (was rs115462410) C/T (FWD) C:Ancestral T:Minor	HLA	rs115462410_T
rs199347 C/T (REV) C:Ancestral G:Minor	GPNMB	rs199347_C
rs591323 A/G (FWD) G:Ancestral A:Minor	FGF20	rs591323_A
rs118117788 C/T (FWD) C:Ancestral T:Minor	INPP5F	rs118117788_T
rs329648 C/T (FWD) T:Ancestral T:Minor	MIR4697	rs329648_T
rs76904798 C/T (FWD) T:Ancestral T:Minor	LRRK2	rs76904798_T
rs34995376 A/G (FWD) G:Ancestral A:Minor	LRRK2	rs34995376_LRRK2_p.R1441H_A
rs35801418 A/G (FWD) A:Ancestral G:Minor	LRRK2	rs35801418_LRRK2_p.Y1699C_G
rs34637584 A/G (FWD) G:Ancestral A:Minor	LRRK2	rs34637584_LRRK2_p.G2019S_A
rs35870237 C/T (FWD) T:Ancestral C:Minor	LRRK2	rs35870237_LRRK2_p.I2020T_C
rs11060180 A/G (FWD) A:Ancestral G:Minor	CCDC62	rs11060180_G
rs11158026 C/T (FWD) T:Ancestral T:Minor	GCH1	rs11158026_T
rs2414739 A/G (FWD) G:Ancestral G:Minor	VPS13C	rs2414739_G
rs14235 A/G (FWD) G:Ancestral A:Minor	BCKDK/STX1B	rs14235_A
rs11868035 A/G (FWD) G:Ancestral A:Minor	SREBF/RAI1	rs11868035_A
rs17649553 C/T (FWD) T:Ancestral T:Minor	MAPT	rs17649553_T
rs12456492 A/G (FWD) G:Ancestral G:Minor	RIT2	rs12456492_G
rs55785911 A/G (FWD) G:Ancestral A:Minor	DDRGK1	rs55785911_A

Quality control of sample handling was determined by comparing the subject's sex reported by Coriell Institute for Medical Research with the genotypic sex estimated from X chromosome heterogeneity. X chromosome heterogeneity calculations were based on common SNPs from the International HapMap Project that had genotypes with missingness <5% and hardy-Weinberg equilibrium p values >1E-5. Samples considered heterozygosity outliers (>±3sd from the sampled mean) or with discrepancies between reported sex and genotypic estimated sex were excluded.

Study 2 (Project ID 114)

PI: Andrea Dardis & Stefania Zampieri (University Hospital Santa Maria della Misericordia)

Method: Parallel End Pair Sequencing via Illumina MiSeq

The whole genomic sequence of the *GBA1* gene (GenBank J03059.1) was analyzed by massive parallel pair end sequencing. For each sample, the whole genomic *GBA1* sequence was PCR--amplified in two overlapped fragments of 2870bp and 4492bp, using primers designed to selectively amplify the gene and not the homologous pseudogene. Pair end libraries were generated using a Nextera XT DNA sample preparation kit (Illumina) and sequenced on an Illumina MiSeq platform. Pair end reads were mapped to the reference human genome (hg19, Chr 1 155211205-155204618; Amplicon 1: 155211205-155208234; Amplicon 2: 155209110-155204618). Only samples with a sequencing quality control score ≥30 and with a minimal read depth of 200X were taking into consideration for variant analysis. All SNV and indel information are output in variant call format. Annotation of SNV was performed with wANNOVAR [http://wannovar.usc.edu/]. Exonic variants were confirmed by Sanger sequencing and the presence of two variants in the same allele was confirmed by cloning and sequencing the PCR product (containing both variants). The possible presence of the Rec∆55allele (non-detectable by NGS) has been ruled out by Sanger sequencing of exon 9.

Mutation Carriers

Below you will find a summary of the mutations detected in the BioFIND cohort along with patient IDs corresponding to the samples.

Mutation	Patient ID	
GBA		
GBA N370S	BF-1008	
GBA N370S	BF-1156	
GBA L483P	BF-1016	
GBA R296Q	BF-1021	
GBA S235P/A495P	BF-1080	
GBA A495P	BF-1128	
GBA R324H	BF-1199	
GBA L29Afs*18	BF-1236	
LRRK2		
LRRK2 G2019S	BF-1108	
LRRK2 G2019S	BF-1198	
LRRK2 R1441C	BF-1222	
DJ-1		
c24+2T>A	BF-1044	
Parkin		
Parkin R275W	BF-1257	

More Information

Full datasets and methods descriptions for the BioFIND cohort are available at https://biofind.loni.usc.edu/.