NAME STAGE I, II, III HIGH LEVEL SUMMARY OF THE THERAPEUTIC POTENTIAL OF THE TARGET, HIGHLIGHT KEY TX DIRECTION GAPS AND/OR RISKS

	≥ De	Criteria (within 3 years)	yes/maybe/no yes/maybe/no	
Gap	De-Risking Goal	Key Experimental Approach	Risk	Exit/Success Criteria (Optional)
Gap 1:		 Experimental Approach (if applicable) Assay/Sample Type Model 	X Risk (Consider time & feasibility)	✓ Validation of (Consider impact/strength of data package)
Gap 2:		 Experimental Approach (if applicable) Assay/Sample Type Model 	X Risk	✓ Validation of
Gap 3:		 Experimental Approach (if applicable) Assay/Sample Type Model 	X Risk	✓ Validation of

GUARD RAILS FOR FILLING ON THE VALIDATION SLIDE

- 1. List all critical gaps: Overview of key, addressable gaps to de-risk target in PD model or patient population (list available on slide 3 of target pitch decks)
- 2. Rank the gaps based on impact and feasibility to address in 2-3 years
- **3. Outline** your derisking goal.
- **4. Use the checklist** to guide key experimental approaches.
 - Do we need to conduct **in vivo** experiments?
 - Do we need **in vitro** experiments?
 - Is there a need to **create or find** a new tool molecule?
 - Should existing tool molecules be improved?
 - Do we need to analyze more patient data?
 - Is additional **genetic analysis** required?
 - Are any critical tools, mouse models, assays, biomarkers, needed?
- **5. Risks** or obstacle of experimental approach
- **6. Exit/Criteria** for a successful outcome

		≥ Do	e-Risking Strategy & Success	Criteria (within 3 years)	y/m/n
	Gap	De-Risking Goal	Key Experimental Approach	Risk	Exit/Success Criteria (Optional)
Rank Order from Summary Slide	Gap 1: No evidence of efficacy in preclinical PD models	Genetic modulation of GPR37 in preclinical PD models	Make KO of GRP37 Cross GPR37 KO with a parkin model (endpoints behaviour, insoluble GPR37) Cross GPR37 KO with a-syn models (determine if role of GPR37 is parkin specific)	X Risk: as role of GPR37 is limited. There is no evidence to suggest that GPR-37 would be effective for the PD population. X Time risk, as would need to generate animals	✓ Validation of efficacy of GPR37 inhibition (via genetic modulation) in parkin and a-syn PD associated models.
	Gap 2: No tool molecules	Development and validation of preclinical pharmacological tools to measure GPR37	In vitro assay: cAMP assays (unclear if GPCR subtype is established), insoluble GPR37 In vivo model & assay: Consider using parkin and a-syn models with similar PD associated endpoints, and GPR37 soluble and insoluble levels.	X Risk: Developing a brain penetrant GPR37 inhibitor could be challenging.	✓ Validation of efficacy of GPR37 inhibition (via pharmacological modulation) in parkin and a-syn PE associated models.
	Gap 3: Limited evidence in PD patient samples	Assessment of GPR37 levels in PD patient CSF samples	Validate presence of soluble and insoluble GPR37 in PD patient CSF samples Validate DE of GPR37 in PD patient cohorts (parkin and sporadic PD) CSF samples	X Risk: Levels of GPR37 maybe variable in PD patients. DEG levels could be limited to sub-cohort of PD patients (Parkin mutation or those with proteostasis dysfunction).	✓ Demonstrated robust modulation of GPR37 levels in PD patient CSF

- During the discussion, MJFF team members and BCBA scientists have been assigned the role of filling out the slide.
 - Core member will carry out the presentation on day 2.

